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A Quasi-One-Dimensional Integration Technique
for the Analysis of Planar Microstrip Circuits

via MPIE/MoM
Luciano Tarricone, Mauro Mongiardo, and Francesco Cervelli

Abstract—The mixed-potential integral-equation approach,
using spatial-domain closed-form Green’s functions, and dis-
cretized with the method-of-moments, is a state-of-the-art method
for the analysis of planar microstrip circuits. One of its most
time-demanding tasks is the evaluation of the impedance matrix
terms, which typically requires the numerical computation of
two-dimensional integrals. A method based on suitable changes
of coordinates and domains is introduced in this paper in order
to reduce such integrals to a quasi-one-dimensional numerical
integration, with a substantial enhancement in the efficiency of
the analysis, without affecting the accuracy of the approach.
Results are given demonstrating, for practical accuracy values, an
improvement of typically one order of magnitude in simulation
times.

I. INTRODUCTION

E FFICIENT modeling of printed circuits and antennas is
crucial in current microwave engineering [1], [2] and has

stimulated several contributions. In particular, a mixed-poten-
tial integral equation (MPIE) was proposed by Mosig [3], [4].
More recently, the latter formulation was enhanced by the in-
troduction of suitable closed-form spatial-domain Green’s func-
tions [5] and suitable transformations of the impedance matrix
[6]. Considerable efforts are currently made in order to improve
the efficiency and accuracy of these numerical methods, such as
the inclusion of three-dimensional (3-D) unknown currents, ef-
ficient choices for the Sommerfeld integration paths [7], and the
enhancement of the complex-image method [8], [9] for multi-
level stratified microstrip lines [10], [11]. The above-mentioned
contributions are mainly in the direction of reducing the com-
putation time required for filling the impedance matrix. Also on
this subject, and more recently, papers have been proposed that
discuss a clever analysis of basis functions behavior [12], with
a significant improvement of space and spectral integrations of
coupling integrals [13]–[19].

The numerical core of method-of-moments (MoM) ap-
proaches for the analysis of microstrip circuits is represented
by both the computation of the impedance matrix and the
solution of the corresponding linear system. The computation
effort for the evaluation of the impedance matrix is basically
determined by the numerical evaluation of some reaction
integrals. Therefore, their efficient and accurate solution,
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possibly appropriate for a wide class of Green’s functions, is
of paramount importance.

In this paper, we propose an efficient method for eval-
uating the impedance matrix elements of the circuit via a
suitable computation of the relevant reaction integrals. The
two-dimensional (2-D) numerical integration encountered in
previous approaches [20] is reduced to a quasi-one-dimensional
(1-D) numerical integration. Even though this is achieved by
partitioning the problem domain into equal cells, this does not
represent a practical limitation to the presented technique, as
different optimum sizes for the elementary cells can be used in
several regions of a single circuit so that an optimum accuracy
is ensured. The method proposed is valid for a very large class
of Green’s function (the only hypothesis is that the Green’s
function depends only on the source–test distance), and can
also be applied to circuits with more than one dielectric layer.

This paper is organized as follows. First, for the reader’s
convenience, the MPIE formulation is resumed; afterwards,
the quasi-1-D integration method is described, some results are
given, and finally, conclusions are drawn.

II. ELECTRIC–FIELD MPIE WITH CLOSED-FORM

GREEN’S FUNCTIONS

We consider -port planar circuits with infinite transverse
dimensions for both the dielectric and ground plane; the metal-
lization thickness is assumed negligible. In order to achieve im-
proved convergence properties, we select the MPIE formulation
[3], [4], which is solved by considering closed-form Green’s
functions in the spatial domain and by using the MoM.

Spatial-domain mixed —potential Green’s functions for a
layered medium are expressed by Sommerfeld integrals [21]
whose integrands are slowly decaying oscillating functions,
hence, the calculation is very time consuming. A possible
approach to circumvent this problem is the quasi-dynamic
image model [22], which is not accurate enough when surface
and leaky wave effects must be accounted for [23].

The evaluation of the above-mentioned Green’s functions in
closed form is performed as suggested in [5], [9], and [24].
Accordingly, the spatial-domain mixed-potential Green’s func-
tions are written in the following manner:

(1)

i.e., as the sum of direct terms and quasi-dynamic images
( , ), surface waves ( , ), and complex
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images ( , ). As well known, the complex image
method is not so accurate when the source–test distance is
larger than a certain threshold. This is taken into account by
performing a phenomenological analysis, as described in [25].
The same analysis is also useful to cope with some singularity
problems, often encountered in space-domain formulations
[26].

The Galerkin’s MoM is used to discretize the relevant equa-
tions, by selecting rooftop functions defined over elementary
rectangular domains. This way, a linear system of sizeis de-
rived from the MPIE

(2)

The entry in the impedance matrix is expressed by a
fourfold integral, in the spatial variables, —corresponding
to the source coordinates—and, —corresponding to the test
coordinates. Part of its evaluation can be performed analytically
[27] and, by paying attention to the choice of appropriate basis
functions, the integrals“can be reduced to double integrals over
finite domains”[20]. The unknowns and are the (complex)
amplitudes of the basis functions. The right-hand-side (RHS)
vector depends on the excitation applied to the microstrip
network.

III. QUASI-1-D INTEGRATION

In order to compute the impedance matrix, a time-demanding
2-D numerical integration was employed in earlier methods,
even though several efforts have been made to improve the con-
vergence of this computation [27], [20]. Some attempts in this
sense have also been made by focusing on appropriate choices
of the basis and test functions [28], with attention paid on the
meshing performed on the problem’s domain. In this last ap-
proach [28], the entries of the matrix in (2) are expressed as a
four-dimensional (4-D) integral

(3)

where , , , and are the domains along, , , and
of the interacting cells (Fig. 1), ,

and the fourfold integration appearing in (3) is therein trans-
formed into a 2-D one.

In this paper, we show how integration (3) can be reduced to
a quasi-1-D integral. The basic observations are: 1) the depen-
dence of the Green’s function only on the source–test distance
; 2) the possibility of reducing the remaining terms in the in-

tegration kernel (3) to functions with the same behavior; and
3) the possibility of numerically evaluating the contour of the
integration domains for the above-mentioned remaining terms.
The three observations lead to the following procedure: first, the
four integrals can be considered as a 2-D convolution, which can
be analytically solved inside each elementary cell of the circuit.
This way, (3) is reduced to a 2-D integration, whose kernel is the

Fig. 1. Reference system and the relative changes of coordinates. One source
and one test current cell are sketched.

product between the Green’s function and the function attained
from the 2-D convolution. A final change of coordinates is now
sufficient to separate the two integrals so that one integration
is numerically performed with high efficiency by evaluating an
analytical function in a small number of points (less than ten).
Hence, only a 1-D integration must be performed to completely
evaluate (3).

We continue now to describe with more details the proposed
integration technique. The usual change of variables

(4)

reduces the problem to a double integration, hence, providing

(5)

(variables , , , , , and are introduced and described in
Fig. 1).

Letting be the domain for the-variable, we can cast

(6)

With a suitable change of coordinates (see the Appendix for
details), the integration (6) can be transformed into a bidimen-
sional convolution

(7)
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which can be solved very efficiently in analytical form, as de-
scribed in the Appendix. This way, (3) is transformed into a
two-variable integration

(8)

With the following new change of variables:

(9)

we can write

(10)

Thanks to the fact that the Green’s functions only depend on the
source–test distance, a function

(11)

can be evaluated nearly completely in closed form, with a very
high efficiency ( and can be numerically evaluated
for each fixed value of ). Finally, we have

(12)

With a suitable choice [28] of basis and test functions,
is integrable in the Riemann sense. The and , as
well as the forms of domains and , and ,
and and depend on the choice of the basis and test func-
tions and their domain of definition.

After evaluating , the -matrix terms can be written as

(13)

thus demonstrating that the elements of the impedance matrix
can be evaluated by solving a quasi-1-D integral.

The proposed quasi-1-D formulation can be exploited when
equal cells are used in a rectangular mesh. An appropriate par-
titioning of the circuit into subregions can be generally used to
analyze every subregion with an optimum cell size. In the Ap-
pendix, details are given about the derivation of the coefficients

for the case of rooftop functions.
As already mentioned, the quasi-1-D approach has been

tested here in the case of a Galerkin MoM using rooftop basis
and test functions. In the Appendix, the detailed formulation

Fig. 2. (b) Input impedance on the Smith chart of: (a) the microstrip-line
center-fed square antenna with a tuning stub. Physical dimensions:� = 2:62,
d = 0:794 mm, a = b = 28:6 mm, w = 2:2 mm, l = 26:4 mm,
l = 4:4 mm,d = 4:4 mm. Frequency range: 2.98–3.3 GHz. A mesh with a
3-mm edge was used for the simulations.

Fig. 3. Comparison between the 1-D and 2-D integration’s performance.
Normalized times refer to the analysis of the patch antenna in Fig. 2. They
are attained as the ratio between the simulation time of the 2-D and 1-D
implementation. On thex-axis, the accuracy required to make the integration
converge is reported. An accuracy of 10is typically selected for practical
computation (refer to table).

for this case is given. Nevertheless, it can also be extended
to other functions, such as pulse functions, attaining different
forms for (13).

IV. RESULTS

The accuracy and efficiency of the implemented method is
demonstrated for a patch antenna, reported in the literature and
sketched in Fig. 2. In Fig. 3, we compare the time performance
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Fig. 4. (a) Scattering parameters of matching section: (b) in magnitude and
(c) in phase. Physical dimensions:" = 9:9, d = 10 mil,w = 9:2 mil,
w = 23 mil, l = 30 mil, l = 50:6 mil. A mesh with a 0.5-mm edge was
used for the simulations.

of an MPIE/MoM package implementing a quasi-1-D integra-
tion of (3) with respect to the previous 2-D integration proposed
by [28]. In the -axis, the required numerical accuracy is re-
ported, on the -axis the corresponding normalized computing
time for the 2-D implementation with respect to the quasi-1-D
one. We define accuracy as the threshold considered to iden-
tify the integration convergence. A typical value, guaranteeing
a good tradeoff between performance and accuracy is 10(er-
rors for scattering parameters are around 1%).

The case of Fig. 2, simulated with a mesh with a 3-mm edge,
generates a matrix of dimension 240. When an accuracy of 10
is considered, the computing time for one frequency point is
2.67 s on a PC Pentium 200 MHz with the 2-D implementation,
and 0.33 s using the quasi-1-D integration. A sparse banded ap-
proach is used for the system solution step, as described in [6]: it
guarantees a high efficiency in the system solution time, taking
advantage from the use of reordering techniques.

As easily predictable, the 1-D integration is highly superior.
The numerical complexity on the number of integration points
is quadratical in the case of the 2-D integration, and linear in the
case of quasi-1-D solution. This is in clear accordance with the
response of the reported curve.

Another evidence is reported in Fig. 4, where a two-port cir-
cuit is analyzed. The advantage of the 1-D integration is also ap-
parent in this case (normalized 2-D/1-D simulation times are re-
ported in Fig. 5). The case of Fig. 4, simulated with a mesh with
a 0.5-mm edge, generates a matrix of dimension 416. For an ac-
curacy of 10 , the computing time for one frequency point is
5.56 s on a PC Pentium 200 MHz with the 2-D implementation,
and 0.7 s using the quasi-1-D integration. The sparse banded ap-
proach mentioned before is used [6].

The system generation (i.e., the evaluation of the entries in the
impedance matrix) is a heavy computational task, as resumed in
Table I. For the two circuits (the patch antenna and the two-port
circuit), the percentage of time in the two main tasks (system
generation and system solution) is reported. As can be seen,
the system generation plays an important role. This explains the

Fig. 5. As in Fig. 3, referring to the circuit in Fig. 4.

TABLE I
EFFORT REQUIRED BY THE SYSTEM GENERATION, WITH RESPECT TO

THE SYSTEM SOLUTION AND THE REMAINING TASKS, FOR THE

TWO ADDRESSEDCASES

importance of an efficient solution of (3), as well as the huge
speed up achieved with the quasi-1-D integration.

Of course, the reported speed ups are attained when com-
paring the 2-D implementation with the quasi-1-D implementa-
tion of the MPIE/MoM formulation adopted in this paper. Sev-
eral alternative schemes for the MPIE/MoM are available in
the literature. In such cases, the applicability of the proposed
strategy should be specifically investigated.

V. CONCLUSIONS

In this paper, a substantial enhancement is achieved for the
efficient numerical analysis of planar microstrip circuits. A
method is described based on suitable analytical changes of
coordinates and domains so that the elements are evaluated by
solving quasi-1-D numerical integrations instead of the 2-D
integrations performed in previous approaches. The above tech-
nique, although very general, has been presented in conjunction
with an MPIE formulation of the problem, and closed-form
spatial-domain Green’s function expressions. In such a case,
the efficient evaluation of the entries of the impedance matrix is
of paramount importance to achieve high performance. Results
demonstrate that the proposed approach guarantees a high
accuracy and decreases simulation times, in practical cases,
typically of one order of magnitude.

APPENDIX

We describe the case for the terms of the impedance ma-
trix; similar formulations hold for the remaining , , and
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terms. We refer to the case of basis and test rooftop functions,
i.e.,

if

elsewhere

(14)

where is the surface of the current cell where the
function is defined and are the coordinates of the
domain’s center. Similar expressions hold for the . In the
case of rooftop test and basis functions andinteraction, as
seen from (13), we must basically derive two functions
and . In fact, the terms can be expressed as [28]

(15)

It can be demonstrated that

(16)

(17)

Now, in accordance with (11), we indicate with and
two functions so that

(18)

(19)

Therefore, in order to find out and , we must derive
the two functions and .

We first concentrate on . Referring to Fig. 6, (3) can be
written in the following form, in the case of interaction along
the -axis for both test and basis functions, i.e., for the
terms in the impedance matrix:

(20)
with

(21)

By using the change of coordinates (4), we have

(22)

Fig. 6. Simple example for thexx interaction. Two current cells (A andB)
are shown, with the relative centers.

Now, by casting

(23)

we have , , and

(24)

(25)

With (23)–(25), (22) is turned into

(26)

with

(27)

Now, (26), in the case of interactions, can be reduced after
some long calculations to the summation of several terms, basi-
cally of the following two kinds:

(28)

and have forms such as

(29)

while , , , and have forms such as

(30)
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The solution of (28) with (29) and (30) leads to the following
generical solution for (26):

(31)
The best way to derive the coefficients and in (31) is to
recall that (26) is a bidimensional convolution of two rooftop
functions. If we indicate with the distance between two in-
teracting elementary cells, the solution of the convolution with
graphical methods easily leads to the following formula:

(32)

being the convolution along, and being the
convolution along , with

elsewhere

(33)

elsewhere.

(34)

Therefore, it is apparent that the coefficientsand assume
different values depending on the mutual distancebetween the
interacting cells, even though their form is analytically deter-
mined. For instance, using (9), for two cells with , we
have

(35)

Once the has been determined, the is easily evalu-
ated. In fact, we can now observe in (18) that is composed of
terms and , with , whose prim-
itives are known in closed form. For each value of, and

can be numerically evaluated: as apparent from Fig. 1,
with simple calculations, the values forcan be found for all
the interacting cells. Moreover, inside each cell the appropriate

and can be identified with (32) to perform the integration.
The domain of can be partitioned into eight subdomains
[the four partitions of in (33) and the two of in (34)],
and the calculation to evaluate become extremely fast.

In conclusion, is evaluated in a very efficient and
nearly completely analytical way. Similar procedures can be fol-
lowed to evaluate . It can be derived that

(36)

being the convolution along and being the
convolution along with

elsewhere

(37)

elsewhere.

(38)

The use of (9) transforms into a summation of terms
and with (as in the previous case),
whose primitives are known in closed form, thus making the
derivation of quite immediate.
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