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A Quasi-One-Dimensional Integration Technique
for the Analysis of Planar Microstrip Circuits
via MPIE/MoM

Luciano Tarricone, Mauro Mongiardo, and Francesco Cervelli

Abstract—The mixed-potential integral-equation approach, possibly appropriate for a wide class of Green'’s functions, is
using spatial-domain closed-form Green's functions, and dis- of paramount importance.
cretized with the method-of-moments, is a state-of-the-art method In this paper, we propose an efficient method for eval-

for the analysis of planar microstrip circuits. One of its most - . : o
time-demanding tasks is the evaluation of the impedance matrix ua_tlng the |mpedz_;\nce matrix elements Of_ the_ circuit via a
terms, which typically requires the numerical computation of Suitable computation of the relevant reaction integrals. The
two-dimensional integrals. A method based on suitable changes two-dimensional (2-D) numerical integration encountered in
of coordinates and domains is introduced in this paper in order previous approaches [20] is reduced to a quasi-one-dimensional
to reduce such integrals to a quasi-one-dimensional numerical (1-D) numerical integration. Even though this is achieved by

integration, with a substantial enhancement in the efficiency of S . )
the analysis, without affecting the accuracy of the approach. partitioning the problem domain into equal cells, this does not

Results are given demonstrating, for practical accuracy values, an fepresent a practical limitation to the presented technique, as
improvement of typically one order of magnitude in simulation different optimum sizes for the elementary cells can be used in

times. several regions of a single circuit so that an optimum accuracy
is ensured. The method proposed is valid for a very large class
|. INTRODUCTION of Green’s function (the only hypothesis is that the Green’s

FFICIENT modeling of printed circuits and antennas igunction depends o_nly_on t_he source—test dis_tance)_, and can

E crucial in current microwave engineering [1], [2] and ha"éllso pe applleq to CII‘CU.ItS with more than one dielectric Iayer.'
stimulated several contributions. In particular, a mixed-poten—ThIS paper is organized as foI.Iows_. First, for the reader's
tial integral equation (MPIE) was proposed by Mosig [3], [4]ponven|gnce, .the MP.IE formulatllon IS rgsumed; afterwards,
More recently, the latter formulation was enhanced by the ime quaS|-1-'D integration method is described, some results are
troduction of suitable closed-form spatial-domain Green's fun@¢": and finally, conclusions are drawn.
tions [5] and suitable transformations of the impedance matrix
[6]. Considerable efforts are currently made in order to improve
the efficiency and accuracy of these numerical methods, such as
the inclusion of three-dimensional (3-D) unknown currents, ef- We consider/N-port planar circuits with infinite transverse
ficient choices for the Sommerfeld integration paths [7], and tlémensions for both the dielectric and ground plane; the metal-
enhancement of the complex-image method [8], [9] for multlization thickness is assumed negligible. In order to achieve im-
level stratified microstrip lines [10], [11]. The above-mentionedroved convergence properties, we select the MPIE formulation
contributions are mainly in the direction of reducing the coni3], [4], which is solved by considering closed-form Green’s
putation time required for filling the impedance matrix. Also offunctions in the spatial domain and by using the MoM.
this subject, and more recently, papers have been proposed th&patial-domain mixed —potential Green’s functions for a
discuss a clever analysis of basis functions behavior [12], withyered medium are expressed by Sommerfeld integrals [21]
a significant improvement of space and spectral integrationswliose integrands are slowly decaying oscillating functions,
coupling integrals [13]-[19]. hence, the calculation is very time consuming. A possible

The numerical core of method-of-moments (MoM) apapproach to circumvent this problem is the quasi-dynamic
proaches for the analysis of microstrip circuits is representedage model [22], which is not accurate enough when surface
by both the computation of the impedance matrix and trend leaky wave effects must be accounted for [23].
solution of the corresponding linear system. The computationThe evaluation of the above-mentioned Green'’s functions in
effort for the evaluation of the impedance matrix is basicallylosed form is performed as suggested in [5], [9], and [24].
determined by the numerical evaluation of some reactiédxcordingly, the spatial-domain mixed-potential Green’s func-
integrals. Therefore, their efficient and accurate solutiotipns are written in the following manner:
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images (2, .;, G%). As well known, the complex image Y
method is not so accurate when the source—test distance is
larger than a certain threshold. This is taken into account by
performing a phenomenological analysis, as described in [25].
The same analysis is also useful to cope with some singularity
problems, often encountered in space-domain formulations
[26].

The Galerkin's MoM is used to discretize the relevant equa- —
tions, by selecting rooftop functions defined over elementary xy)
rectangular domains. This way, a linear system of 8izis de- Source >

rived from the MPIE

Znw L I, Ve Fig. 1. Reference system and the relative changes of coordinates. One source
y = . (2)  and one test current cell are sketched.
Lyz  Lyy Iy Vy

The entryZ;; in the impedance matri¥% is expressed by a product between the Green’s function and the function attained
fourfold integral, in the spatial variables, y'—corresponding from the 2-D convolution. A final change of coordinates is now
to the source coordinates—angy—corresponding to the testsyfficient to separate the two integrals so that one integration
coordinates. Part of its evaluation can be performed analyticalynumerically performed with high efficiency by evaluating an
[27] and, by paying attention to the choice of appropriate bagifalytical function in a small number of points (less than ten).
functions, the integralsan be reduced to double integrals OVerHence, on|y al-D integration must be performed to Comp]ete]y
finite domains’[20]. The unknownd,. and, are the (complex) evaluate (3).
amplitudes of the basis functions. The right-hand-side (RHS)we continue now to describe with more details the proposed

vector[V] depends on the excitation applied to the microstriptegration technique. The usual change of variables
network.

.T—.T/:U,

[ll. QUASI-1-D INTEGRATION z+a =p
In order to compute the impedance matrix, a time-demanding y—y =v
2-D numerical integration was employed in earlier methods, yt+y =g ()

even though several efforts have been made to improve the con-

vergence of this computation [27], [20]. Some attempts in thigqces the problem to a double integration, hence, providing
sense have also been made by focusing on appropriate choices

of the basis and test functions [28], with attention paid on the

meshing performed on the problem’s domain. In this last ap- //f(l’v y)//G (\/(95 -2+ (y - y’)Q)
proach [28], the entries of the matrix in (2) are expressed as a
four-dimensional (4-D) integral

(', o) da' dy dz dy

g
(f.Gxg :%//G(u’v)//f<u;r ’U;q>

)
— N /Dy [z, y)/DI, /Dy, G(r)g(x, y) dz’ dy' dx dy _g<p;u7 q;v> dp da . d ©)
)

(variablesz, #’, v, 3/, u, andv are introduced and described in
whereD,, D,, D,,, andD,, are the domains along y, ', and  Fig. 1).
y' ofthe interacting cells (Fig. 1),= /(z — /)2 + (y — ¥/)?, Letting D,. be the domain for the-variable, we can cast
and the fourfold integration appearing in (3) is therein trans-

formed into a 2-D one. E 1 (e tp vtg
In this paper, we show how integration (3) can be reduced%u’ YTy D) I D(a) 2 72

a quasi-1-D integral. The basic observations are: 1) the depen- p—u g—uv
dence of the Green’s function only on the source—test distance y < 5 ' 9 ) dpdq. (6)
r; 2) the possibility of reducing the remaining terms in the in-

3) the possibility of numerically evaluating the contour of thgetails), the integration (6) can be transformed into a bidimen-
integration domains for the above-mentioned remaining term$enal convolution

The three observations lead to the following procedure: first, the
four integrals can be considered as a 2-D convolution, which can _ _

be analytically solved inside each elementary cell of the circuﬁ.(u’ v)=5(¢ ) = /D(C) P(n) F(& mg(C—u, n—v) dCdn
This way, (3) is reduced to a 2-D integration, whose kernel is the @)
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which can be solved very efficiently in analytical form, as de-
scribed in the Appendix. This way, (3) is transformed into a
two-variable integration

/ / G(u, v)S(u, v) du dv. (8) >
D(u) 4 D(v)
With the following new change of variables:
u=rcosé v=rsiné (9) P
we can write / — ProsentMethod \\
/ o Parketal. [29]
/ G(u, v)S(u, v) dudv / e \
D) /D) L X P
r2 g2(r) \ : ‘-}
= / G(T)T/ S(rcosé, rsiné)dédr. (10) \ -
L &1(r) \ //
\, g
Thanks to the fact that the Green'’s functions only depend on the A
source—test distanae a functionW () )
£2(r)
W(7) é ’ S(T cos&, rsin 5) de (11) Fig. 2. (b) Input impedance on the Smith chart of: (a) the microstrip-line
€1(r) ’ center-fed square antenna with a tuning stub. Physical dimensioas2.62,

d = 0794 mma = b = 286 mm,w = 2.2 mm,l, = 26.4 mm,
can be evaluated nearly completely in closed form, with a vety= 4.4 mm,d, = 4.4 mm. Frequency range: 2.98-3.3 GHz. A mesh with a
high efficiency € (r) andé,(r) can be numerically evaluateg® ™™ edge was used for the simulations.

for each fixed value of). Finally, we have 1w

/]f(w, y)//G(\/(w—w’)“r(y—y’)Q) /.

~g(2, ) dx' dy’ dx dy

T2

_.
8
T
\

2-D/1-D Computing Times
3
\

= W (rYG(r)r dr. (12)
T
With a suitable choice [28] of basis and test functiongr) e
is integrable in the Riemann sense. Te:, v) andW(r), as //’
well as the forms of domain®(p) and D(q), &1 (r) andéa(r), I "
andr, andr, depend on the choice of the basis and test func 12 1;3 1;;““ s e pe PN
tions and their domain of definition. Accuracy
After evaluatingV (r), the Z-matrix terms can be written as Accuracy | Ertor on 8 paramelers
r 1 103 0.12%
Zacac = / Wl w(7)Gﬁx(7) ) WQJ}(T)G[I(T):| rdr 1077 0.41%
I w? 107 0.64%
[ 1 10-° 1.25%
Dy = / 3 ng(r)G’I(T)} rdr 0% 1507
r 103 3.12%

1
Zyw = / ~ 2 Wgy(r)G’](?’)} rdr
- 1 Fig. 3. Comparison between the 1-D and 2-D integration’s performance.
. NovA NN oo Normalized times refer to the analysis of the patch antenna in Fig. 2. They
Zyy = / Wiy (r) Gy, (r) = ) Way (r)G*(r )} rdr (13)  are attained as the ratio between the simulation time of the 2-D and 1-D
- implementation. On the-axis, the accuracy required to make the integration
fqRverge is reported. An accuracy of 10is typically selected for practical

computation (refer to table).

thus demonstrating that the elements of the impedance ma
can be evaluated by solving a quasi-1-D integral.

The proposed quasi-1-D formulation can be exploited when this case is qiven. Nevertheless. it can also be extended
equal cells are used in a rectangular mesh. An appropriate .t IS given. Nev , ! X

titioning of the circuit into subregions can be generally usedi other functions, such as pulse functions, attaining different

analyze every subregion with an optimum cell size. In the A orms for (13).
pendix, details are given about the derivation of the coefficients
W(1,2,3) (=, 4} fOr the case of rooftop functions.

As already mentioned, the quasi-1-D approach has beerThe accuracy and efficiency of the implemented method is
tested here in the case of a Galerkin MoM using rooftop baslemonstrated for a patch antenna, reported in the literature and
and test functions. In the Appendix, the detailed formulaticsketched in Fig. 2. In Fig. 3, we compare the time performance

IV. RESULTS
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Fig. 4. (a) Scattering parameters of matching section: (b) in magnitude and — .
(c) in phase. Physical dimensions: = 9.9, d = 10 mil,w; = 9.2 mil, 10 2.82%

we = 23 mil, I, = 30 mil, I, = 50.6 mil. A mesh with a 0.5-mm edge was

used for the simulations. Fig. 5. Asin Fig. 3, referring to the circuit in Fig. 4.

of an MPIE/MoM package implementing a quasi-1-D integra- TABLE |

i i i NDi : EFFORT REQUIRED BY THE SYSTEM GENERATION, WITH RESPECT TO
tion of (3) with resp(_ect tothe previous 2-D |_ntegrat|on proposed THE SYSTEM SOLUTION AND THE REMAINING TASKS, FOR THE
by [28]. In the z-axis, the required numerical accuracy is re- TWO ADDRESSEDCASES

ported, on they-axis the corresponding normalized computing

time for the 2-D implementation with respect to the quasi-1-D Circual Syslem gen. | Syslem sol | Other
) : : PatchAntenna 72, 16% 127,

one. We define accuracy as the threshold considered to iden- — il — -

. . . . . Two — portCircust 61% 23% 16%

tify the integration convergence. A typical value, guaranteeing

a good tradeoff between performance and accuracyi§ (-
rors for scattering parameters are around 1%). importance of an efficient solution of (3), as well as the huge
The case of Fig. 2, simulated with a mesh with a 3-mm edgspeed up achieved with the quasi-1-D integration.
generates a matrix of dimension 240. When an accuracydf 10  Of course, the reported speed ups are attained when com-
is considered, the computing time for one frequency point jigring the 2-D implementation with the quasi-1-D implementa-
2.67 s on a PC Pentium 200 MHz with the 2-D implementatiotion of the MPIE/MoM formulation adopted in this paper. Sev-
and 0.33 s using the quasi-1-D integration. A sparse banded gfal alternative schemes for the MPIE/MoM are available in
proach is used for the system solution step, as described in [6}hié literature. In such cases, the applicability of the proposed
guarantees a high efficiency in the system solution time, takiggrategy should be specifically investigated.
advantage from the use of reordering techniques.
As easily predictable, the 1-D integration is highly superior.

The numerical complexity on the number of integration points . . . .
plextty g b In this paper, a substantial enhancement is achieved for the

is quadratical in the case of the 2-D integration, and IinearinthgfiCient numerical analvsis of planar microstrip circuits. A
case of quasi-1-D solution. This is in clear accordance with tﬁnethod is described baied on psuitable anal igal chan .es of
response of the reported curve. vt 9

Another evidence is reported in Fig. 4, where a two-port cifordinates and domains so that the elements are evaluated by
iﬁolvmg quasi-1-D numerical integrations instead of the 2-D

V. CONCLUSIONS

cuitis analyzed. The advantage of the 1-D integration is also ap- : . .

parent in this case (normalized 2-D/1-D simulation times are A __tegratlons performed in previous approaches. Th_e aboye tec_:h-
ported in Fig. 5). The case of Fig. 4, simulated with a mesh wi jaue, although very geﬂera" has been presented in conjunction
a 0.5-mm edge, generates a matrix of dimension 416. For an \é\{&t_h_an MP“.E formule}non of_the pr°b'e”." and closed-form
curacy of 10°S, the computing time for one frequency point iSspatlal—domam Green’s function expressions. In such a case,

556 s on a PC Pentium 200 MHz with the 2-D implementatioﬁhe efficient evaluation of the entries of the impedance matrix is

and 0.7 s using the quasi-1-D integration. The sparse bandedc&j‘éﬁaran:m:nt LantoILance to ach(ljeve high pr(]arformanfe. Resﬂ_tsh
proach mentioned before is used [6]. monstrate that the proposed approach guarantees a hig

The system generation (i.e., the evaluation of the entries in fcuracy and decreases 5|m_ulat|on times, in practical cases,
Rlcally of one order of magnitude.

impedance matrix) is a heavy computational task, as resumed
Table I. For the two circuits (the patch antenna and the two-port
circuit), the percentage of time in the two main tasks (system
generation and system solution) is reported. As can be seen)Ve describe the case for the terms of the impedance ma-
the system generation plays an important role. This explains thi&; similar formulations hold for the remainingy, yx, andyy

APPENDIX
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terms. We refer to the case of basis and test rooftop functions,

i.e.,

Jnw = (14)

if 2 — 2] < Py |y — yn| < Dy/2

0, elsewhere

where 2h,h, is the surface of the current cell where the
function is defined andz,,, y,) are the coordinates of the

domain’s center. Similar expressions hold for thg,. In the
case of rooftop test and basis functions andinteraction, as
seen from (13), we must basically derive two functidis,,

andWs,. In fact, the termsZ,,.,,, , can be expressed as [28]

1
(15)
It can be demonstrated that
Ty G 5 Ty = / WG (rdr (16)
0J a]m
< 5 Gq % > 2 / WQT
w .

Oz
Now, in accordance with (11), we indicate with,, and.Ss,.
two functions so that

a‘]xnl
Ox '’

aJa}n
Or

9 %

< zms GA

Zacacrn, n —

(ryrdr.
17

Eo
Wia(r) = / Syalr, €) de (18)

&2
Wia(r) = / Saa(r, €) de. (19)

Therefore, in order to find outV,, andW5,,, we must derive
the two functionsS,, andS,,.

We first concentrate o1§,.. Referring to Fig. 6, (3) can be
written in the following form, in the case of interaction along

the z-axis for both test and basis functions, i.e., for fig 45
terms in the impedance matrix:

/ / / / ) B dx’ dyf dz dy
D(Ay) J D(Az) D(By) D(Bac)

(20)
with

Ta—he <z <z4+h,
zp —hy, <2’ <zp+h,
hy/2 <y <ya+hy/2

yp — hy/2 <y <yp+ hy/2. (21)

By using the change of coordinates (4), we have

Slm(ua v é / / JApu <u;_pa U;—q>
D(p) / D(q)

cdotJpp, <]%, 4— 5 ) dp dq.

(22)

(x'.y’)

(Xa. Yo

(Xg, Yg)

Fig. 6. Simple example for thex interaction. Two current cellsA andB)
are shown, with the relative centers.

Now, by casting

ptu ptu
2 2 ™ -
¢ e n e (23)
we havedp = 2h, d¢, dg = 2h, dy, and
p—u
— g
2 u— (x4 —2B)
=(— 24
 =¢ " (24)
q—v
—YB — _
2 v —(ya —yB)
=n- —= =7 25
W W (25)
With (23)—(25), (22) is turned into
Sla}(u U (Cv 77)
-/ G (¢ =y
D)/ D(n
(26)
with
—hy <n < hy. 27)

Now, (26), in the case aofx interactions, can be reduced after
some long calculations to the summation of several terms, basi-

cally of the following two kinds:

0
on, (
fw)

FOF(Q dC)

g(w)
2h, < | a0 d<> (28)
0
f(w) andg(u) have forms such as
142k, +u (29)

while f(€), (<), ¢'

(), andg” (¢) have forms such as

1:I:L.

oh. (30)

521
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The solution of (28) with (29) and (30) leads to the following In conclusion,W1,(r) is evaluated in a very efficient and

generical solution for (26):

nearly completely analytical way. Similar procedures can be fol-

lowed to evaluatéVs,.(r). It can be derived that

S1e(u, v) = (azu®+asu® +ayu + ag)(bsv> +-byv® +bv+-bo).

The best way to derive the coefficienis andb; in (31) is to
recall that (26) is a bidimensional convolution of two rooftop

h, Ta—X
(1) Sz(u,v) = i R <u - TB> Ry <U

_Ya—UYn
hy

).

(36)

functions. If we indicate with: the distance between two in-R..(») being the convolution along and R,,,(z) being the
teracting elementary cells, the solution of the convolution wittonvolution along; with

graphical methods easily leads to the following formula:

—z— 2, —2<z< -1
S bR TA—Tp & Ta—Tp 3z + 2, —1<2<0
12(%, v) = hohyRee U—T 7 U—T Ree =9 —32+2, 0<2<1 37)
(32) z—2, 1<2<2
. . . 0 elsewhere
R.:(=) being the convolution alongd, and R,,(z) being the ’
. . z+1, -1<2<0
convolution alongy, with
Ryy=<1-2 0<2<1 (38)
(23 0 elsewhere.
g+22+2z+4/3, —2<z< -1 ’
5 The use of (9) transforms,,. into a summation of termsxs™ £
_ 22 +2/3, —1<2<0 andsin” 5. W.it.h m,n = 0,1, _2, 3 (as in the previous cgse),
R 2 (33) whose primitives are known in closed form, thus making the
=19 2 derivation of/W,,, quite immediate.
S-2+2/3,  05:51 2= G
23 ) REFERENCES
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